Az atomrobbanás utáni pusztulási sugár a bomba erejétől függ. 20 kilotonnás teljesítménynél ez 1 km, 20 megatonnánál 10 km-ig terjed. Egy 100 megatonnás atombomba felrobbanásakor a pusztulási sugár 35-50 km lesz.
Vagyis egy ilyen töltettel elpusztítható egy közepes méretű város. Ezenkívül 80 km-es sugarú körben kisebb pusztítások lesznek, az emberek test- és légúti égési sérüléseket szenvednek.

A termonukleáris vagy hidrogénbombák (ezek a fogalmak szintén felcserélhetők) általában lényegesen erősebbek a nukleáris bombáknál, bár mindkettő a nukleáris fegyverekhez tartozik. Mindkét esetben a magok átalakulásának energiáját használják fel.
A termonukleáris töltet „működési” elve azonban eltér: ez termonukleáris fúzió, nem pedig hasadás. A legfejlettebb termonukleáris bombák „töltete” plutóniumból vagy szegényített uránból, gáz halmazállapotú deutériumból és lítium-deuteridből áll.

A termonukleáris fúzió során a „szuperkönnyű” elemek (deutérium, lítium, trícium) magas nyomás és hőmérséklet (magasabb, mint a Napon) hatására „nehéz” elemekké olvadnak össze, majd felszabadul a robbanáshoz szükséges energia. A könnyű magok forrása lehet a lítium-6 deuterid: a plutónium rúddal és a gyújtószerkezet neutronjaival tríciumra és deutériumra bomlik, majd a két elem összeolvad, héliummagokat képezve.
Valójában az anyag protonjai először taszítják egymást, majd egyesülnek, egy teljesen más elem magját alkotva. Ez a folyamat nagyon gyorsan megy végbe. A robbanás ereje attól függ, hogy mennyi lítium-6 deuteridnek van ideje reakcióba lépni.

Érdekes módon a termonukleáris bomba tetszőlegesen nagy és erős lehet. A nukleáris bomba „erejét” nem lehet ilyen gyorsan és könnyen növelni. A hidrogénbomba pusztítási zónája sokszorosa a nukleáris bomba pusztítási sugarának.
A termonukleáris töltet sajátossága az is, hogy nem adja a legveszélyesebb károsító tényezőt – a sugárzást. Csakhogy az ilyen fegyverek fejlesztői trükköznek: a termonukleáris bomba belsejében nukleáris bomba található (nem mindig), ami a robbanás általi erős pusztításhoz és a terület radioaktív szennyeződéséhez vezet. A hidrogénbomba belsejében lévő atombomba a termonukleáris fúzió „elindítására” is használható.

A termonukleáris bombának bonyolultabb a gyártása, de hatékonyabb, ha nagy területeket kell elpusztítani. 1953-1954-re a Szovjetunióban és az Egyesült Államokban kétféle hidrogénbomba-konstrukciót hoztak létre és teszteltek – egyfázisú (az összes robbanóanyag egy blokkban van) és kétfázisú (többlépcsős, a reakcióban részt vevő anyagok fajtánként, két blokkra vannak elosztva).
Az 1961-ben létrehozott szovjet hidrogénbomba teljesítménye meghaladta az 58 megatonnát. A „gombafelhő” magassága legalább 67 km volt, a robbanás tűzgömbjének átmérője pedig 4,6 km. A robbanás felhője 800 km-es távolságra terjedt ki, a lökéshullámot még a robbanás epicentrumától 250 km-re lévő repülőgépek is érezték. A Szovjetunió a tervek szerint egy 100 megatonnás hidrogénbombát is létrehozott volna, de a végső konstrukció teljesítményét csökkentették, hogy, ahogy Nyikita Hruscsov mondta, „ne törjék be az ablakokat Moszkvában”.

Hasonló elven működik, mint a hidrogénbomba, a mi Napunk is (feltehetően, mint bármely más csillag). Az ebben az égitestben zajló folyamatok valójában egy millió évekre elnyúló termonukleáris robbanás.
Összességében mit kell érteni? Annak ellenére, hogy mind az atom-, mind a hidrogénbomba a nukleáris fegyverekhez tartozik, működési elvük mondhatni ellentétes. Az atombombában nehéz magok bomlanak könnyebbekre, nagy mennyiségű energia felszabadulásával.
A hidrogén (termonukleáris) bombában viszont az anyagok fúziója megy végbe – szuperkönnyű elemek olvadnak össze nehezebbekké, hatalmas mennyiségű energia felszabadulásával.

Pusztító ereje ellenére a hidrogénbomba nem annyira radioaktív, mint az atombomba. Az atombomba ereje korlátozott, míg a termonukleáris (hidrogén)bomba ereje korlátlan.
Kövesd új Facebook oldalunkat és értesülj további érdekes cikkekről: