208 Volt
A rendszerükben a fogyasztóhoz két fázis (a három lehetségesből) és a nullvezeték érkezik. A fázisok közötti eltolódás azonban nem 180, hanem 120 fok. Ezért a fázisok közötti feszültség 208 V (120 x √3 = 207,85 Volt).

240 Volt
A nagyobb teljesítményű elektromos készülékek, például a háztartási gépek, fűtőberendezések, bojlerek, ruhaszárítók, légkondicionálók és elektromos autók töltőállomásai két fázisvezetőhöz csatlakoznak. A terhelés teljesítménye ugyanaz, de az áram a felére csökken. Ennek eredményeként kisebb keresztmetszetű vezetők is használhatók, mintha a berendezés 120 V-os hálózatról működne.
Az Egyesült Államokban gyakran láthatsz 240 V-ot szolgáltató transzformátorokat az oszlopokon a házak közelében. Minél közelebb van a transzformátor, annál kisebbek a veszteségek.

277 és 480 Volt

A legnagyobb teljesítményű fogyasztók számára az Egyesült Államokban 480 V-os háromfázisú feszültséget használnak. Például olyan berendezésekhez, mint a targoncák és elektromos autók töltői, valamint az ipari gépek. Ez lehetővé teszi kisebb keresztmetszetű vezetékek használatát, és az áram egyenletesen eloszlik az egyes fázisokban.
Egy ilyen hálózatban a fázis és a nulla közötti feszültség 277 V váltakozó áram (480 V osztva a 3 négyzetgyökével). Ezt a feszültséget az Egyesült Államokban nagy elektromos rendszerek (fűtés, szellőzés és légkondicionálás) táplálására használják. A 277 V 120 V helyett történő alkalmazása a lámpatestek által felvett áram 50%-nál nagyobb mértékű csökkentését eredményezi. Ez lehetővé teszi kisebb keresztmetszetű vezetékek használatát, ami csökkenti a súlyukat és ezáltal az elektromos vezetékek költségét is.
A 277 V-os feszültségszabvány a 2000-es évek elejétől kezdett elterjedni az Egyesült Államokban a LED-es világítás megjelenésével.
Az Egyesült Államokban a 480 V-os elektromos hálózat egyik fázisát földelik a nulla földelése helyett. Ez a megoldás a tűzvédelem javítását és a vezetékek szigetelésének öngyulladásának valószínűségének csökkentését célozza a hálózat túlterhelése esetén. Nézd meg a kapcsolási rajzot.

Ha a 120 V-os hálózatukban a nulla van földelve, akkor a 480 V-os hálózatban nincs nulla. A biztonság érdekében rövidzárlat esetén feltétlenül szükség van földelésre. Fogják és földelik az egyik fázist. A rendszer neve: Corner Grounded Delta System (a háromszög egyik sarkának földelése).

A fázisvezető egyben védővezető is. Egyrészt ennek a rendszernek nem szabadna működnie, de mégis működik, és széles körben alkalmazzák az Egyesült Államokban. De ha egy másik fázisvezető elszakad, az áram a földön keresztül a kapcsolószekrény vagy a készülék házára folyik. A ház és a földdel való csatlakozás felmelegszik.
Ezt a földelt fázisvezetővel rendelkező rendszert a vasúti DPD rendszerben és nálunk is használják (a síneken lévő feszültség).
Mi értelme van ennek a sok feszültségszabványnak? Az amerikaiak próbálnak spórolni. Minél magasabb a feszültség, annál vékonyabbak a vezetékek, annál kisebb a költségük. Másrészt viszont ez zavart okoz az egyszerű fogyasztóknál. Bár az egyszerű polgároknak ott engedély nélkül tilos önállóan szerelniük és javítaniuk a vezetékeket. Ellentétben a mi „barkácsolásunkkal”. Nálunk nagyobb a szabadság még a házépítés terén is, mint az Egyesült Államokban. Ott, hogy engedélyt kapj az önálló építkezésre, az évekbe is beletelhet.
És még egy érdekes tény az amerikai vezetékekről.
A helyi Nemzeti Elektromos Szabályzat (NEC) előírásai szerint a szabványos földelő vezeték mindig további szigetelés nélkül készül.

Ezt az áramvezető eret Protective Earth (PE)-nek vagy földelő vezetéknek nevezik. Ezeknek a kábeleknek nem kell égésgátló védőcsövet használniuk, mivel a szerkezetükben már van egy speciális védőréteg. Ez a réteg kartonból készül, amelyet égésgátló anyagokkal impregnálnak.
Ez a megközelítés lehetővé teszi, hogy a védőberendezések gyorsabban működjenek a fázis sérülése vagy a kábel sérülése esetén, mivel a védőkapcsolók vagy a FI-relék kisebb késleltetéssel reagálnak a vezetők közötti rövidzárlatra, ami a földelő vezeték szigetelésének kiégésével függ össze.
Ez megbízhatóbb védelmet nyújt az elektromos rendszer számára, és minimalizálja a vezetékek túlmelegedésével vagy sérülésével kapcsolatos kockázatokat, ami végső soron növeli az elektromos energia használatának biztonságát.
Kövesd új Facebook oldalunkat és értesülj további érdekes cikkekről: